Marine Invasions Research

Principal Investigator

Biological invasions - the establishment of species beyond their historical range - are a major force of ecological and evolutionary change. Our lab aims to understand the patterns, processes, and consequences of invasions in marine ecosystems on local to global scales.  We have laboratories and staff on both coasts of North America, on Chesapeake Bay and San Francisco Bay (Tiburon Lab).  These bays are focal points for our long-term, intensive research, which spans Pacific and Atlantic shorelines of the Americas --- from polar to tropical latitudes. 

Most marine invasions result from human-mediated species transfers, which are often associated with commercial and recreational vessels. A major component of our research examines shipping, transportation, and trade dynamics for the United States with the National Ballast Information Clearinghouse (NBIC), a joint program with the U.S. Coast Guard that is based at SERC.  NBIC tracks the status and trends of ballast water delivery and management for the Nation.

Our research encompasses a wide range of projects, exploring the ecology and management of coastal marine ecosystems.  We focus primarily on invasion dynamics but also examine species interactions of both native and non-native species. Overall, we seek to: (1) characterize patterns of marine invasion across space, time, and taxonomic groups; (2) develop a mechanistic understanding of the processes that drive observed patterns; (3) advance predictive capability about the establishment, spread, and impacts of non-native species in marine ecosystems; (4) evaluate the efficacy of management strategies to limit the establishment and impact of invaders; and (5) understand the roles of species interactions, including predator-prey and host-parasite relationships, in marine communities. 

Further details on the various dimensions of our work are available below. 

Zabin, C.J., Marraffini, M., Lonhart, S.I. McCann, L., Ceballos, L., King, C., Watanabe, J. Pearse, J.S., and Ruiz, G.M. 2018. Non-native species colonization of highly diverse, wave swept outer coast habitats in Central California. Marine Biology 165: 31. https://doi.org/10.1007/s00227-018-3284-4 January 18, 2018

Carlos, S., Martins, G.M., Hernández, J. C., Alves, F., Neto, A.I., Ribeiro, C.,  León-Cisneros, K., Canning-Clode, J., Rosas-Alquicira, E., Mendoza, J.C., Titley, I., Wallenstein, F., Couto., R.P, and Kaufmann, M. 2018. Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): a spatial approach to community structure. European Journal of Phycology, DOI: 10.1080/09670262.2017.1385098 January 18, 2018

Miller, J.A., Gillman, R., Carlton, J.T., Clarke, M.C., Nelson, J.C., Otani, M., and Ruiz, G.M. 2018. Trait-based characterization of species transported on JTMD: Effect of invasion prior invasion history on trait distribution. Marine Pollution Bulletin https://doi.org/10.1016/j.marpolbul.2017.12.064 January 12, 2018

Davidson TM, Alteri AH, Ruiz GM, and Torchin ME. 2018. Bioerosion in a changing world: a conceptual framework. Ecology Letters DOI: 10.1111/ele.12899 January 12, 2018

Chang, A.L., Brown, C.W., Crooks, J.A., Ruiz, G.M. 2017. Dry and wet periods drive rapid shifts in community assembly in an estuarine ecosystem. Global Change Biology. DOI: 10.1111/gcb.13972 December 7, 2017


Abstracts

January 18, 2018

Zabin, C.J., Marraffini, M., Lonhart, S.I. McCann, L., Ceballos, L., King, C., Watanabe, J. Pearse, J.S., and Ruiz, G.M. 2018. Non-native species colonization of highly diverse, wave swept outer coast habitats in Central California. Marine Biology 165: 31. https://doi.org/10.1007/s00227-018-3284-4 

More non-native species (NNS) are reported from harbors, estuaries and protected embayments than in wave-exposed, open-coast habitats. In California (USA), hundreds of NNS have become established in international ports, and dozens are known from smaller estuaries. In contrast, only 22 NNS are reported from the state’s 1350 km of open coast. As a result, the perception that open-coast habitats are not vulnerable to invasions has persisted. Management and monitoring focuses on ports and estuaries; the last major monitoring effort on the open coast occurred in 2004. Much of the species-rich Central California coast is now part of a network of marine protected areas (MPAs). We surveyed 12 wave-swept rocky intertidal and eight subtidal sites (from 37°53′40N 122°42′30W to 36°31′16N 121°56′22W) for NNS. At least one NNS was detected at half of the sites surveyed, but most were not widespread or abundant. One exception, a bryozoan in the Watersipora spp. complex, known primarily from ports and estuaries, was found at multiple sites, and was abundant at some. Another non-native, the alga Caulacanthus ustulatus, was abundant at a single site. MPAs were just as likely as sites outside of MPAs to have NNS. For subtidal sites, proximity to a harbor was correlated with the abundance of non-natives. Our findings suggest that our study area is still relatively uninvaded, but the success of Watersipora within some of these highly diverse rocky shore sites underscores the potential vulnerability of high-value open-coast systems to invasions.

Carlos, S., Martins, G.M., Hernández, J. C., Alves, F., Neto, A.I., Ribeiro, C.,  León-Cisneros, K., Canning-Clode, J., Rosas-Alquicira, E., Mendoza, J.C., Titley, I., Wallenstein, F., Couto., R.P, and Kaufmann, M. 2018. Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): a spatial approach to community structure. European Journal of Phycology, DOI: 10.1080/09670262.2017.1385098 

Shallow subtidal macroalgal communities in the North-eastern Atlantic archipelagos (Azores, Madeira, Canaries and Cape Verde) were studied in order to identify their spatial organization patterns and the main drivers of change. Fifteen islands and 145 sites across 15o of latitude and 2850 km were sampled. We found high spatial variability across the scales considered (archipelago, island and site). The structure of macroalgal communities differed among archipelagos, except between Madeira and the Canaries, which were similar. Across a latitudinal gradient, macroalgal communities in the Azores were clearly separated from the other archipelagos; communities in Madeira and the Canaries occupied an intermediate position, while those in Cape Verde appeared at the opposite end of the gradient. In the Azores, species with warm-temperate affinities dominated communities. Cape Verde communities were, in contrast, dominated by tropical taxa, whereas in the subtropical Canaries and Madeira there was a mixture of species with colder and warmer affinities. Apart from crustose coralline algae, the Dictyotales were the group with greatest cover; larger and longer-lived species were progressively replaced by short-lived species along a latitudinal gradient from north to south. The perennial species Zonaria tournefortii dominated the sea-bottom in the Azores, the semi-perennial Lophophora variegata in the Canaries, the filamentous algae in Madeira and the ephemeral Dictyota dichotoma in Cape Verde. We hypothesized that the differences among archipelagos could be explained by synergies between temperature and herbivory, which increased in diversity southwards, especially in Cape Verde. This was supported by the predominance of non-crustose macroalgae in the Azores and of crustose macroalgae in Cape Verde, as would be predicted from the greater herbivore activity. At the scale of islands and sites, the same set of environmental variables drove differences in macroalgal community structure across all the Macaronesian archipelagos.

January 12, 2018

Miller, J.A., Gillman, R., Carlton, J.T., Clarke, M.C., Nelson, J.C., Otani, M., and Ruiz, G.M. 2018. Trait-based characterization of species transported on JTMD: Effect of invasion prior invasion history on trait distribution. Marine Pollution Bulletin https://doi.org/10.1016/j.marpolbul.2017.12.064

Nearly 300 coastal marine species collected from > 630 debris items from the 2011 Great East Japan earthquake and tsunami have landed alive along the North American Pacific coast and the Hawaiian Archipelago. We synthesized life history, environmental, and distributional traits for 103 of these species and compared species with (n = 30) and without (n = 62) known invasion histories. The species represent 12 phyla, and Mollusca, Crustacea, and Bryozoa accounted for 71 of the 103 species. The majority are native to the Northwest Pacific and the Central Indo-Pacific. Species with known invasion history were more common on artificial and hardpan substrates, in temperate reef, fouling, and flotsam habitats, at subtropical and tropical temperatures, and exhibited greater salinity tolerance than species with no prior invasion history. Thirty-five Japanese tsunami marine species without prior invasion history overlapped in ordination trait space with known invaders, indicating a subset of species in this novel assemblage that possess traits similar to species with known invasion history.

Davidson TM, Alteri AH, Ruiz GM, and Torchin ME. 2018. Bioerosion in a changing world: a conceptual framework. Ecology Letters DOI: 10.1111/ele.12899 January 12, 2018

Bioerosion, the breakdown of hard substrata by organisms, is a fundamental and widespread ecological process that can alter habitat structure, biodiversity and biogeochemical cycling. Bioerosion occurs in all biomes of the world from the ocean floor to arid deserts, and involves a wide diversity of taxa and mechanisms with varying ecological effects. Many abiotic and biotic factors affect bioerosion by acting on the bioeroder, substratum, or both. Bioerosion also has socio-economic impacts when objects of economic or cultural value such as coastal defences or monuments are damaged. We present a unifying definition and advance a conceptual framework for (a) examining the effects of bioerosion on natural systems and human infrastructure and (b) identifying and predicting the impacts of anthropogenic factors (e.g. climate change, eutrophication) on bioerosion. Bioerosion is responding to anthropogenic changes in multiple, complex ways with significant and wide-ranging effects across systems. Emerging data further underscore the importance of bioerosion, and need for mitigating its impacts, especially at the dynamic land–sea boundary. Generalised predictions remain challenging, due to context-dependent effects and nonlinear relationships that are poorly resolved. An integrative and interdisciplinary approach is needed to understand how future changes will alter bioerosion dynamics across biomes and taxa. 

December 7, 2017

Chang, A.L., Brown, C.W., Crooks, J.A., Ruiz, G.M. 2017. Dry and wet periods drive rapid shifts in community assembly in an estuarine ecosystem. Global Change Biology. DOI: 10.1111/gcb.13972

Abstract: The impacts of changing climate regimes on emergent processes controlling the assembly of ecological communities remain poorly understood. Human alterations to the water cycle in the western United States have resulted in greater interannual variability and more frequent and severe extremes in freshwater flow. The specific mechanisms through which such extremes and climate regime shifts may alter eco-logical communities have rarely been demonstrated, and baseline information on current impacts of environmental variation is widely lacking for many habitats and communities. Here, we used observations and experiments to show that interannual variation in winter salinity levels in San Francisco Bay controls the mechanisms determining sessile invertebrate community composition during the following summer. We found consistent community changes in response to decadal-scale dry and wet extremes during a 13-year period, producing strikingly different communities.Our results match theoretical predictions of major shifts in species composition in response to environmental forcing up to a threshold, beyond which we observed mass mortality and wholesale replacement of the former community. These results provide a window into potential future community changes, with environmental forcing altering communities by shifting the relative influences of the mechanisms controlling species distributions and abundances. We place these results in the con-text of historical and projected future environmental variation in the San Francisco Bay Estuary.

Species distributions are at the core of all ecological and evolutionary processes. Despite recognition that accelerating invasions are radically changing fundamental ecological processes, we currently lack the data for a broad scale understanding of these  patterns, emergent properties, and practical implications across both spatial and temporal scales. We are collecting quality occurrence data and using these data to understand patterns and mechanisms of invasion, and making these data publicly available for broader application by the public.

Our Projects

The impacts of introduced species pose significant challenges for conservation and restoration because they undermine a desired outcome for target species or habitats. In addition, some invasions impose significant economic costs through loss of agriculture, forestry, and fisheries products, and others, including mosquito-borne viruses and toxic algal blooms, have severe human health effects. Detailed analysis of several high-profile species invasions have highlighted the types and potential magnitude of invasion impacts that exist, however, the effect of most non-native species and the full scope of impacts from invasions remains poorly understood. To address this gap, we use a variety of approaches to characterize and test the ecological, evolutionary, and social effects of non-native species across diverse ecosystems.  This work advances understanding of how the Earth’s ecosystems function and also serve to inform resource management and conservation strategies.

Our Projects

Biological invasions provide opportunities to examine how species and ecosystems respond to new arrivals, and how species adapt to new environmental conditions. These types of “natural experiments” provide new insights into many biological processes, especially early in the colonization process, that are not possible with native communities.  We examine invasion ecology at the population, community, and ecosystem level across a diverse range of habitats and organisms, both to advance basic science and inform management and conservation strategies.

Our Projects

Managing biological invasions is a worldwide endeavor that aims to (a) prevent the human-caused spread of species, (b) control and remove unwanted species, and (c) reduce negative impacts to society and the environment. We are evaluating the efficacy and consequences of invasion management strategies and policies in coastal estuaries and marine systems.  Our work is often done in collaboration with local, state, federal and international partners and used actively to inform current management and policy decisions.

Our Projects

We study the dynamic interactions between society, trade, transport, and species in a variety of ways. These include modeling transport networks and biotic exchange, evaluating business model forecasts and their effects on trade routes and species distributions, and assessments of organism transfers across major corridors between oceans and continents.

Our Projects

Understanding how modes of human transportation affect the environment, and biological invasions in particular, is complicated and involves many components including both human and natural history. Human history because most invasions result from human-aided species transfers and invasion patterns often reflect human movements and transportation systems. Natural history because species identifications and their life history characteristics are paramount to knowing which species are non-native and how they have likely been introduced. We work to address these complexities and strive to understand the dynamics of species transport in marine systems. 

Our Projects

Balanced predation and competition are key to the health of any ecosystem. We are examining predation and competition rates in several environments including in the Rhode River near SERC where we study native species in nearshore environments and in introduced fouling communities on the Atlantic and Pacific coasts.  

Our Projects

Communities are constantly being shaped by human activities, activates that can affect hydrology, climate, chemical inputs, species richness (number of species that make up the community), as well as habitat quantity and quality. Our research focuses on how biological invasions change the marine and estuarine communities they invade and how recipient communities protect themselves from invasion. The following highlights a few of our recent projects exploring community changes resulting from nonnative species introductions.

Our Projects

Laravel tunicates

Propagule Pressure in Marine Habitats

We are examining the complex, dynamic interactions between parasites and their hosts, including both the evolutionary and ecological mechanisms that influence these interactions. Our research includes a wide variety of hosts (e.g., seagrasses, bivalves, crustaceans) and parasites (e.g., protists, bacteria, crustaceans).   

Signature Programs