Fish and Invertebrate Ecology

Principal Investigator

Oceans and coastal ecosystems support an incredible diversity of fish and invertebrates that have sustained human societies for millennia through fisheries and aquaculture. These species are key players driving ecosystem structure and function, but human activities threaten the productivity and diversity of marine life. In the Anthropocene, finding a balance between harvest and conservation of fish and invertebrates, and mitigating other human impacts on marine ecosystems, will be key to sustaining productive, resilient, and biodiverse coastal and marine ecosystems. We address broad problems of population and community ecology using long-term quantitative sampling, animal behavior/movement studies, and innovative experiments at multiple spatial and temporal scales. Our studies analyze human impacts and natural change in freshwater, estuarine and marine systems.

Following the Movement of Life: Tagging Sharks and Rays

by Cosette Larash and Claire Mueller

For the last three years, a team of biologists from the Smithsonian Environmental Research Center has been tracking stingrays, sharks and other species along the East coast of the United States. Matt Ogburn and Charles Bangley are leading the project, in an effort to learn more about these charismatic yet often misunderstood animals. It’s part of the Movement of Life Initiative, a developing program in animal tracking research conducted by Smithsonian Institution researchers and their colleagues.

Ogburn and Bangley are focusing on five species: Cownose Rays and four major species of sharks (Bull Sharks, Blacktip Sharks, Dusky Sharks, and Smooth Dogfish). They began tagging cownose rays in 2014, and added on sharks in 2016. By understanding the movement patterns of these animals, the Smithsonian biologists and their colleagues hope to unlock some of the mystery that surrounds them. For example, scientists know Cownose Rays are born in the Chesapeake Bay and return when they’re about four years old, but no one knows where they go in the meantime. The sharks they are studying all occupy similar areas, but use underwater habitats differently. By learning how and where these organisms move, they can understand their environment as well.

In the future, the scientists hope to use the data to uncover when and why these species occupy different areas, and determine the potential impact of human activities such as fisheries and offshore wind farms. Check out the videos above and below to learn more about these projects.

 

Understanding the ecology of fisheries is critical to maintaining resilient, productive and biodiverse coastal and marine ecosystems. Fishing is an important sector of coastal economies, provides an important supply of food for human societies, and is an activity of great cultural and historical importance. But fisheries have also contributed to the decline of coastal and marine ecosystems through changes in biomass and community structure, disruption of food webs, and alteration of habitats. Using the Chesapeake Bay as a model system, we are addressing fisheries issues including the impacts of harvest, restoration, and conservation on populations, communities and ecosystems, habitat use, migrations and connectivity with other coastal ecosystems. To learn more about our fisheries ecology and conservation research, please visit the following webpages:

Our long-term studies of fish and invertebrate communities in the Rhode River, Maryland study site offer a window in the community structure and population dynamics of fish and invertebrate communities in one of the most productive ecosystems on earth, the Chesapeake Bay. Spanning more than three decades, this research tracks seasonal, annual, and decadal variation in species composition and abundance of fishes and macro-invertebrates. Sampling methods include trawling, seining, a fish weir, benthic infauna cores, and tethering experiments. The long-term descriptive data, in combination with our experimental studies, provide an unusual database for exploring populations, communities, predator-prey relationships, impacts of fisheries, and impacts of environmental variability and climate change, and other ecological processes. To learn more about our long-term research, please follow the links below:

Many species on the planet migrate during their lifetime, using different habitats during specific life stages. What habitats are most important and why? How will climate change affect migrations? What are the benefits and costs of migration to individuals? How can we best manage fisheries for migratory species? How do migratory species affect community structure and ecological processes? To learn more about our Movement of Life Initiative research, please visit our Movement of Life Initiative webpage: