Specialty
Ecosystem Ecology, Biogeochemistry, Soil Science, Wetland Ecology, Forest Ecology, Climate Change Science, Blue Carbon Science Publications
-
(2015). Global change accelerates carbon assimilation by a wetland ecosystem engineer . Environmental Research Letters, 10 (11) , 115006. http://dx.doi.org/10.1088/1748-9326/10/11/115006
-
(2013). Anaerobic Metabolism in Tidal Freshwater Wetlands: III. Temperature Regulation of Iron Cycling . Estuaries and Coasts, 36 (3) , 482-490. http://dx.doi.org/10.1007/s12237-012-9536-5
-
(2013). Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO2. Plos One, 8 (5) , e64386. http://dx.doi.org/10.1371/journal.pone.0064386
-
(2013). Anaerobic Metabolism in Tidal Freshwater Wetlands: II. Effects of Plant Removal on Archaeal Microbial Communities . Estuaries and Coasts, 36 (3) , 471-481. http://dx.doi.org/10.1007/s12237-012-9496-9
-
(2013). Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland. Global Change Biology, 19 (11) , 3368-3378. http://dx.doi.org/10.1111/gcb.12316
-
(2013). Nutrient Availability and Soil Organic Matter Decomposition Response to Prescribed Burns in Mid-Atlantic Brackish Tidal Marshes . Soil Science Society of America Journal, 77 (5) , 1852-1864. http://dx.doi.org/10.2136/sssaj2012.0272
-
(2013). Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland . New Phytologist, 200 (3) , 767-777. http://dx.doi.org/10.1111/nph.12409
-
(2013). Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland . New Phytologist, 200 (3) , 753-766. http://dx.doi.org/10.1111/nph.12333
-
(2013). Anaerobic Metabolism in Tidal Freshwater Wetlands: I. Plant Removal Effects on Iron Reduction and Methanogenesis . Estuaries and Coasts, 36 (3) , 457-470. http://dx.doi.org/10.1007/s12237-012-9527-6
-
(2013). Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise . Global Change Biology, 19 (5) , 1495-1503. http://dx.doi.org/10.1111/gcb.12147
-
(2013). Reduction–Oxidation Potential and Oxygen . Methods in Biogeochemistry of Wetlands (71-85) http://dx.doi.org/10.2136/sssabookser10.c5 Soil Science Society of America .
-
(2013). Reduction–Oxidation Potential and Oxygen. Methods in Biogeochemistry of Wetlands (71-85) .
-
(2013). Increased Methane Emissions by an Introduced Phragmites australis Lineage under Global Change . Wetlands, 33 (4) , 609-615. http://dx.doi.org/10.1007/s13157-013-0417-x
-
(2012). Coastal Wetlands of Chesapeake Bay . Wetland Habitats of North America: Ecology and Conservation Concerns (29-43) University of California Press .
-
(2012). Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide . Environmental microbiology, 14 (5) , 1145-1158. http://dx.doi.org/10.1111/j.1462-2920.2011.02695.x