Working Groups

Coastal Carbon Working Groups

The Coastal Carbon Network (CCN) actively coordinates and engages in topical working groups which seek to quantitatively improve the state of the science through expertise exchange, collaboration, tool development, and data sharing.

Learn more about our working groups below:

Methane Working Group

Methane Working Group

Time and Location: December 7 and 8, 2019, hosted at the NASA Ames Research Center, Moffett Field, California

Overarching goal of CH4 working group: Improve predictions of methane emissions from coastal wetlands. Specifically, we aim to compile all methane flux data from coastal habitats (not mangroves) in the CONUS to parameterize and validate a set of nested process-based CH4 models.

Research Questions

  1. How well can we predict methane emissions from coastal wetlands? In other words, what are the main sources of error? What types of wetlands are the most difficult to model (along spectrum of salinity, disturbance/age, plant community etc.)
  2. What data streams are needed to improve our predictions?
  3. Can our process-based models predict interannual variability? If not, why? How does this influence predictions of CH4 budgets in the future?
  4. What guidance can we give to the science and management communities based on these efforts?

The Coastal Carbon Research Coordination Network (CCRCN) is dedicated to providing a welcoming and supportive environment for all people, regardless of background or identity. However, we recognise that some groups in our community are subject to historical and ongoing discrimination, and may be vulnerable or disadvantaged. Membership in such a specific group can be on the basis of characteristics such as gender, sexual orientation, disability, physical appearance, body size, race, nationality, sex, colour, ethnic or social origin, pregnancy, citizenship, familial status, veteran status, genetic information, religion or belief, political or any other opinion, membership of a national minority, property, birth, age, or choice of text editor. We do not tolerate harassment of participants on the basis of these categories, or for any other reason.

Harassment is any form of behaviour intended to exclude, intimidate, or cause discomfort. Because we are a diverse community, we may have different ways of communicating and of understanding the intent behind actions. Therefore we have chosen to prohibit certain forms of behaviour in our community, regardless of intent. Prohibited harassing behaviour includes but is not limited to:

  • Written or verbal comments which have the effect of excluding people on the basis of membership of a specific group listed above
  • Causing someone to fear for their safety, such as through stalking, following, or intimidation
  • The display of sexual or violent images
  • Unwelcome sexual attention
  • Nonconsensual or unwelcome physical contact
  • Sustained disruption of talks, events or communications
  • Incitement to violence, suicide, or self-harm
  • Continuing to initiate interaction (including photography or recording) with someone after being asked to stop
  • Publication of private communication without consent

Behaviour not explicitly mentioned above may still constitute harassment. The list above should not be taken as exhaustive but rather as a guide to make it easier to enrich all of us and the communities in which we participate. All CCRCN interactions should be professional regardless of location: harassment is prohibited whether it occurs on- or offline, and the same standards apply to both.

Enforcement of the Code of Conduct will be respectful and not include any harassing behaviors. Any changes to the meaning of this Code of Conduct must be approved by majority vote of the CCRCN Steering Committee. CCRCN working group and network members will be informed of these changes and any concerns that are raised will be discussed by the Steering Committee.

Thank you for helping make this a welcoming, friendly community for all.

This code of conduct is a modified version of that used by The Carpentries, which was a modified version of that used by PyCon, which in turn is forked from a template written by the Ada Initiative and hosted on the Geek Feminism Wiki. Contributors to this document: Adam Obeng, Aleksandra Pawlik, Bill Mills, Carol Willing, Erin Becker, Hilmar Lapp, Kara Woo, Karin Lagesen, Pauline Barmby, Sheila Miguez, Simon Waldman, Tracy Teal.

Members involved in CCRCN collaborations are entitled to their own intellectual property, and distinctions should be made clarifying what is individual property versus group property. Here are the principles to which the Soil Carbon working group adheres to:

  • Anything developed as a group is collective intellectual property (IP) that members collectively decide what to do with (such as assigning a creative commons license or signing rights over to a publisher).
  • Anything developed outside the group is the intellectual property of the individual who produced it or their institution (whichever is applicable).
  • Any outside IP needs to be properly acknowledged and cited in CCRCN work.
  • All members agree not to share unpublished work outside the group without explicit permission to do so.
  • At the end of the project, working group members commit to making code and derivative data products that the group developed collectively open and available as part of data releases associated with papers and reports.
  • The working group will publish products that only include data that is or will be publicly available (via repository) at the time of working group publication.

Participant Biographies

 

Fay Belshe headshotDr. Ariane Arias-Ortiz  

Dr. Ariane Arias Ortiz is an environmental and marine scientist interested in carbon biogeochemical cycling, ecosystems dynamics and the use of radionuclides and tracers in environmental records/materials to study present, past and future processes related to climate change. Her PhD research focused in understanding the capacity of Blue Carbon ecosystems in storing carbon at different time scales and the carbon stock losses and loss rates associated to the degradation of these habitats. Currently, as a NOAA Climate and Global Change post-doctoral fellow at the Berkeley Biometeorology Lab (UCB) and Biogeochemistry lab (UCSC), she studies the balance between carbon burial, carbon emissions and lateral export in different wetland types (tidal and tidally-restricted, intact and restored, saline and freshwater) as well as the processes that control soil organic matter decomposition and associated CO2 and CH4 emissions.​.

 
 
 
 
Dr. Scott Bridgham

Scott Bridgham is a professor and an ecosystem ecologist in the Institute of Ecology and Evolution at the University of Oregon. He has examined the biogeochemistry of methane dynamics in freshwater wetlands since the late 1980s, working primarily in peatlands. He was the lead of the first State of the Carbon Cycle Report (SOCCR) for North American wetlands and participated in the second report that was published in 2018. He currently is examining methane dynamics at a large warming and elevated atmospheric CO2 manipulative experiment (SPRUCE) in a northern Minnesota peatland. More recently he started examining trace gas emissions and soil carbon sequestration rates in two Oregon estuaries in restored, natural, and disturbed conditions along salinity gradients.

 

 

 

EFheadshoDr. Etienne Fluet-Chouinard

Etienne is a Postdoctoral Research Fellow in the Department of Earth Systems Science. His research at Stanford University contributes to the Global Carbon Project methane budget by constraining the global distribution of wetland types using remote sensing and hydrological modeling, a key source of uncertainty in the global methane budget. Etienne’s background centers on the application of geospatial tools, remote sensing and modeling to the study of limnology and freshwater. His prior research has spanned a range of topics related to freshwater ecosystems at the global scale, ranging from anthropogenic stressors assessment, historical wetland drainage, wetland classification, conservation planning and inland fisheries underreporting.

 

 

 

 

 

Dr. Sara Knox

Dr. Sara Knox is an assistant professor in the Department of Geography at the University of British Columbia. Dr. Knox’s research focuses on measuring and modeling trace gas, water, and energy exchange in restored and natural wetlands to improve our understanding of the impacts of climate variability and human activities on wetland carbon and greenhouse gas dynamics. She investigates how wetland greenhouse gas fluxes respond to a changing climate and disturbances, and how we can modify land management practices for climate change mitigation and adaptation. She combines micrometeorological measurements with remote sensing and modelling to understand soil-plant-atmosphere interactions across a range of spatial and temporal scales. This research is done in collaboration with a broad group of researchers and institutions to help inform and advance climate policy. Visit her website here.

 

 

 

 

 

gavin_mcnicol.pngDr. Gavin McNicol

Gavin McNicol is a postdoctoral fellow at Stanford University where he contributes to the Global Carbon Project’s FLUXNET-CH4 synthesis activity. His PhD from UC Berkeley focused on wetland biogeochemistry and ecosystem ecology in restored California Delta marshes where he downscaled ecosystem methane fluxes to wetland patches and used isotopic analyses to understand the provenance of wetland methane production. Gavin is broadly interested in improving understanding of methane biogeochemistry across microbial to global scales, including mitigation opportunities in human managed systems such as restored wetlands and the waste sector. In his current position he is compiling eddy covariance methane flux measurements across FLUXNET and leading an effort to produce a globally gridded product for freshwater wetland methane fluxes using remote sensing and machine learning techniques.

 

 

 

 

Dr. Brian NeedelmanBneedleman

Dr. Brian Needelman is an Associate Professor of Soil Science at the University of Maryland in the Department of Environmental Science & Technology. He teaches and performs research in the fields of soil science, pedology, coastal wetlands, and coastal resiliency. His coastal wetland research focuses on management and restoration practices to increase tidal marsh sustainability. He also conducts research on greenhouse gas emissions and accounting in coastal wetland systems including carbon sequestration and methane emissions. His coastal resiliency research focuses on the integration of natural and social science approaches to better understand and increase the resilience of coastal socio-ecological systems. 

 

 

 

 
 
s russelSarah Russell

Sarah Russell is completing an MSc in Geography at the University of British Columbia. She received a BS in Biological Sciences from Wellesley College in 2017. She is interested in land-atmosphere carbon dynamics and quantifying the terrestrial carbon sink. Her research at UBC involves modeling greenhouse gas fluxes from restored tidal wetlands in the Sacramento-San Joaquin River Delta.

 

 

 

 

 

 

Dr. Debjani Sihi

I am an environmental biogeochemist with a broad research interest in the role of microbial- and enzyme-mediated processes in soil organic matter decomposition and greenhouse gas emissions from natural and managed systems. I have taken leadership roles in various research projects at the interface of soil microbial ecology, evolutionary biology, and ecosystem ecology. My research work includes both empirical studies and process-based modeling. I use biogeochemical models to evaluate the fate of soil (and ecosystem) carbon (and nutrient) in the face of climate change in systems ranging from the tropics (El Yunque National Forest in Puerto Rico) and subtropics (Florida Everglades) to temperate (Harvard Forest, MA, USA) and boreal transition forests (Howland Forest, ME, USA).

 

 

 

 

Dr. Lisa-Marie Windham Myers

Dr. Lisamarie Windham-Myers is a wetland ecologist and lead scientist for the USGS-NRP program “Plant:Soil:Water Interactions in Wetland Ecosystems”. Broadly-trained in ecosystem ecology, her research focuses on plant physiology and its influence on carbon, nutrient, and trace-metal biogeochemistry. Her approaches span landscape-to-molecular scales as necessary to understand how human and stochastic alterations of wetland structure influence wetland function.  A San Francisco Bay native, her local research sites represent a wide range of salinity and management conditions, from rice agriculture to coastal and restored wetlands.  Lisa serves in several local, national and international science advisory efforts to evaluate wetland management and modeling approaches to quantify wetland carbon sequestration, greenhouse gas budgets and/or mercury methylation and export. Visit her website here

 

 

 

 

Administrator Biographies

Dr. Patty Oikawa

Dr. Patty Oikawa is an assistant professor in the Department of Earth and Environmental Sciences at the California State University, East Bay. Patty is a biogeochemist who specializes in biosphere-atmosphere interactions. Her research investigates how land management practices influence greenhouse gas emissions and the role of land management in climate change mitigation. Patty employs field monitoring and manipulation techniques with a focus on micrometeorology. She also specializes in process-based biogeochemical modeling and model-data fusion approaches. She collaborates with regional to global-scale modeling projects and is actively incorporating models into carbon policies in California. Visit her website for more information.

 

 

 
 
 
James HolmquistDr. James Holmquist

James Holmquist is an ecologist at the Smithsonian Environmental Research Center, specializing in global change and carbon cycling in wetlands. In 2015 he joined a NASA-funded project tracking U.S. coastal wetland greenhouse gas storage and emissions. He now manages the Coastal Carbon Research Coordination Network, and is the PI of a NASA Carbon Monitoring Systems project on Forecasting Coastal Carbon. James aims to improve the state of science and management using data synthesis, teamwork, and training.

 

 

 

 

 

Dr. Patrick MegonigalPatrick Megonigal headshot

Pat Megonigal is Senior Scientist and Associate Director of Research at the Smithsonian Environmental Research Center. Dr. Megonigal is an ecosystem ecologist with research interests in carbon and greenhouse gas cycling in wetlands and forests, particularly as they relate to global change. He is the Lead Investigator of the Smithsonian’s Global Change Research Wetland, a long-term research site dedicated to understanding the stability of tidal wetlands faced with accelerated sea level rise and biogeochemical interactions between wetlands and estuaries. Dr. Megonigal is a contributing author to the Coastal Blue Carbon Handbook and the VCS Methodology on Restoration of Tidal Wetlands and Seagrasses, and he is a member of the Scientific Working Group of the Blue Carbon Initiative.

 

 

 

 

 

Dr. Jim Tang

Jim Tang is interested in ecosystem biogeochemistry, soil-plant-atmosphere interactions, and global change ecology. His research focuses on the impacts of climate change and human activities on ecosystem processes and functions, and the feedback to the climate and Earth system. He uses observational, experimental, and modeling approaches to understand and simulate carbon, nitrogen, and water cycles within ecosystems and between the Earth surface and the atmosphere across various scales. His research improves our understanding of ecosystem services and informs sound environmental and climate policies.

 

 

Soil Carbon Working Group

The Coastal Carbon Network (CCN) is dedicated to providing a welcoming and supportive environment for all people, regardless of background or identity. However, we recognise that some groups in our community are subject to historical and ongoing discrimination, and may be vulnerable or disadvantaged. Membership in such a specific group can be on the basis of characteristics such as gender, sexual orientation, disability, physical appearance, body size, race, nationality, sex, colour, ethnic or social origin, pregnancy, citizenship, familial status, veteran status, genetic information, religion or belief, political or any other opinion, membership of a national minority, property, birth, age, or choice of text editor. We do not tolerate harassment of participants on the basis of these categories, or for any other reason.

Harassment is any form of behaviour intended to exclude, intimidate, or cause discomfort. Because we are a diverse community, we may have different ways of communicating and of understanding the intent behind actions. Therefore we have chosen to prohibit certain forms of behaviour in our community, regardless of intent. Prohibited harassing behaviour includes but is not limited to:

  • Written or verbal comments which have the effect of excluding people on the basis of membership of a specific group listed above
  • Causing someone to fear for their safety, such as through stalking, following, or intimidation
  • The display of sexual or violent images
  • Unwelcome sexual attention
  • Nonconsensual or unwelcome physical contact
  • Sustained disruption of talks, events or communications
  • Incitement to violence, suicide, or self-harm
  • Continuing to initiate interaction (including photography or recording) with someone after being asked to stop
  • Publication of private communication without consent

Behaviour not explicitly mentioned above may still constitute harassment. The list above should not be taken as exhaustive but rather as a guide to make it easier to enrich all of us and the communities in which we participate. All CCN interactions should be professional regardless of location: harassment is prohibited whether it occurs on- or offline, and the same standards apply to both.

Enforcement of the Code of Conduct will be respectful and not include any harassing behaviors. Any changes to the meaning of this Code of Conduct must be approved by majority vote of the CCN Steering Committee. CCN working group and network members will be informed of these changes and any concerns that are raised will be discussed by the Steering Committee.

Thank you for helping make this a welcoming, friendly community for all.

This code of conduct is a modified version of that used by The Carpentries, which was a modified version of that used by PyCon, which in turn is forked from a template written by the Ada Initiative and hosted on the Geek Feminism Wiki. Contributors to this document: Adam Obeng, Aleksandra Pawlik, Bill Mills, Carol Willing, Erin Becker, Hilmar Lapp, Kara Woo, Karin Lagesen, Pauline Barmby, Sheila Miguez, Simon Waldman, Tracy Teal.

Members involved in CCN collaborations are entitled to their own intellectual property, and distinctions should be made clarifying what is individual property versus group property. Here are the principles to which the Soil Carbon working group adheres to:

  • Anything developed as a group is collective intellectual property (IP) that members collectively decide what to do with (such as assigning a creative commons license or signing rights over to a publisher).
  • Anything developed outside the group is the intellectual property of the individual who produced it or their institution (whichever is applicable).
  • Any outside IP needs to be properly acknowledged and cited in CCN work.
  • All members agree not to share unpublished work outside the group without explicit permission to do so.
  • At the end of the project, working group members commit to making code and derivative data products that the group developed collectively open and available as part of data releases associated with papers and reports.
  • The working group will publish products that only include data that is or will be publicly available (via repository) at the time of working group publication.

Participant Biographies

 

Dr. E. Fay Belshe Fay Belshe headshot

Dr. Fay Belshe is interested in how organic matter (OM) forms and decays within soils of coastal vegetated ecosystems, specifically seagrasses. Her work explores the mechanisms and controls governing OM persistence and residence times, with a focus on how living OM (plants, microbes), dead OM, and soil properties interact to determine the dynamic cycling of carbon under a constant and changing climate.

 
 
 
 
 
Dr. Brandon Boyd

Brandon Boyd headshotDr. Brandon Boyd’s research is focused on physical and biological processes in tidal marshes and how those marshes connect with estuary or coastal system. Dr. Boyd uses his expertise in radionuclide chronology and tracers to identify and quantify processes in those systems. His projects are often focused on determining how vertical accretion in restored wetlands may differ from their natural neighbors and designing marsh restorations with balance between storm resilience and ecologic benefit. To learn more about Dr. Boyd’s research, visit his lab website here. 

 

 

Lauren BrownLauren Brown headshot

Lauren completed her MA in Geography at UCLA and is finishing her PhD in the same program working with Dr. Glen MacDonald. While at UCLA she has collected sediment cores from over 10 marshes, spanning the California coast from Humboldt Bay to Tijuana River Estuary. She uses these sediment cores to investigate vulnerability to SLR, carbon storage, and long-term environmental change. Methods she has employed include radiometric dating, LOI, grain size analysis, EA, XRF, macro charcoal, and biological proxy data. Her final year of the PhD will be dedicated to improving her data management and analyses skills.

Dr. Samantha ChapmanSamantha Chapman headshot

Dr. Samantha Chapman has been a professor and scientist at Villanova University in Pennsylvania, USA since 2007. She is also currently the Anne Quinn Welsh Honors Faculty Fellow.  Sam received her Ph.D. from Northern Arizona University and did a postdoctoral fellowship at the Smithsonian Environmental Research Center. Dr. Chapman is an ecosystem ecologist who is interested in how climate change and altered biodiversity change the services that ecosystems provide. She has received grants from NASA, The U.S. National Science Foundation, The U.S. Forest Service and the U.S. Department of Agriculture to conduct her research. Sam and her team collaborate on projects ranging from learning how climate change and rising sea levels alter coastal ecosystems to assessing how nitrogen pollution impacts invasive plant species. For more information on research projects, see her lab group website here.

 
Dr. Ron CorstanjeRon Corstanje headshot

Dr. Ron Corstanje is a professor of Data Sciences at Cranfield and Head of the Centre for Environmental and Agricultural Informatics. He specialises in the application of spatio-temporal models to understand the nature and behaviour of natural systems and processes. Ron is interested in the application of (spatial) modelling tools to understand the structure and function of environmental systems and processes. Environmental systems are complex, and this expresses itself as complex but determinable spatiotemporal patterns. The application of these approaches has led to significant advances in understanding on the spatial dynamics of ecosystem services, across systems including wetlands. Another key area in which these techniques have proven invaluable is in the area of resilience as applied to ecological systems, allowing significant insights into the nature and functioning of resilience. Both these areas have significant societal significance, in helping inform how to infer resilience in the natural and man-made systems on which we depend, but also in how to design and plan the environment to retain the benefits from the natural capital inherent in our greenspaces.

 
Dr. Meagan GonneeaMeagan Gonneea

Dr. Meagan Gonneea is a research scientist at the US Geological Survey Woods Hole Coastal and Marine Science Center. She utilizes a suite of geochemical tools, including naturally occurring radioisotopes in the Uranium-Thorium decay series, to understand both the magnitude and rate of change within coastal ecosystems. In particular, Meagan is interested in how salt marshes have responded to more than a century of accelerating sea level rise, with a focus on their ability to store carbon and dynamically build elevation. She combines historical ecosystem information, gleaned from analysis of salt marsh peat, with modern environmental drivers to constrain future ecosystem responses. 

 
Dr. Christopher JanousekChristopher Janousek headshot

Dr. Janousek is a coastal wetlands ecologist and Assistant Professor (Senior Research) at Oregon State University. His academic training was completed at UC Santa Cruz (BA), UC San Diego (PhD), and UC Davis (post-doc). His main research interest is in coastal plant community ecology along the Pacific coast of the United States. His research also addresses coastal climate change, blue carbon, estuarine hydrology, and wetlands restoration. He is a wilderness and National Parks enthusiast and enjoys backpacking, tidepooling, kayaking, nature photography, and nature writing.

 

 
 
Dr. James MorrisJames Morris headshot

Dr. James Morris is a Professor of Biological and Marine Sciences at the University of South Carolina and a Fellow of the Society of Wetland Scientists and of the American Association for the Advancement of Science.  Morris has served on numerous committees and panels, including those of the US National Science Foundation, the Irish National Science Foundation, the National Research Council of the National Academy of Sciences, and the IndoFlux committee of India. He also is a current member of the Conservation International/UNESCO Blue Carbon Working Group and NOAA’s NERR Science Collaborative Advisory Board. Dr. Morris has a long history of research at North Inlet, SC on the effects on coastal wetlands of changing sea-level. His discovery of a stabilizing feedback between marsh primary production, vertical marsh accretion, and sea-level rise has led to the development of the field of marsh biogeomorphology.   He is PI of an NSF LTREB project at North Inlet, SC, co-PI of the NSF Plum Island LTER project in Massachusetts, and is the developer of the Marsh Equilibrium Model (MEM) and the Cohort Theory Model (CTM). Visit his website here.

 
Dr. Gregory NoeGreg Noe headshot

Dr. Greg Noe has been a Research Ecologist with the U.S. Geological Survey's Water Mission Area in Reston, VA since 2002. Greg studies mud. His research focuses on the interactive influences of geomorphology, hydrology, climate, and biology on nitrogen and phosphorus and carbon biogeochemistry and sediment transport in fluvial ecosystems, as well as plant community ecology and restoration ecology.  He has been studying the effect of sea level rise and salinization on tidal freshwater forested wetland ecosystem resilience and C cycling and sequestration in Virginia, Maryland, South Carolina, and Georgia.

 

Dr. André Rovai

Dr. Rovai is a Research Associate at the Department of Oceanography & Coastal Sciences at Louisiana State University. He is a marine ecologist who is interested in the potential role of coastal wetlands in mitigating the effects of greenhouse gases. Specifically, his research focuses on global controls on carbon storage and sequestration in coastal wetlands in response to geophysical and climatic drivers as well as climate change, with an emphasis on deltaic coastlines.

 
Dr. Jonathan SandermanJonathan Sanderman headshot

Dr. Sanderman is a biogeochemist who specializes in understanding how soil carbon and nutrient cycles have been altered by land-use and climate change. He is particularly interested in understanding the carbon sink capacity of soils and coastal sediments and whether or not these sinks can be managed to mitigate climate change. Prior to joining the Center, Dr. Sanderman spent six years as a research scientist at the Australian Commonwealth Scientific and Industrial Research Organization. Dr. Sanderman holds a B.S. from Brown University and a Ph.D. from the University of California, Berkeley.

 
Dr. Amanda SpivakAmanda Spivak headshot

Dr. Amanda Spivak focuses on developing an integrated understanding of ecological and biogeochemical processes in order to refine the role of coastal ecosystems in the global carbon cycle and predict the likelihood of recovery from human disturbances. She uses innovative geochemical tracer approaches, including stable isotopes and lipid biomarkers, in combination with landscape-scale experiments to quantify carbon pathways, transformations, and fate.

 
Dr. Katherine Todd-BrownKathe Todd-Brown headshot

Dr. Kathe Todd-Brown is a computational biogeochemist. She specializes in soil carbon model analysis and theoretical development from the micro to global scales. She is currently a post-doctoral fellow at Wilfrid Laurier University and the data coordinator for the International Soil Carbon Network. Learn more about her work at her website here.

 
 
 
Megan VahsenMegan Vahsen headshot

Megan is interested in the potential for rapid evolution to drive ecosystem-level processes. She completed her M.S. in Ecology at Colorado State and is currently a Ph.D. student at Notre Dame working with Jason McLachlan to understand how the evolution of a marsh sedge (Schoenoplectus americanus) influences marsh accretion in the Chesapeake Bay. Megan uses field experiments, Bayesian modeling, and near-term ecological forecasting to address this question. 

 

Administrator Biographies

 

Dr. Patrick MegonigalPatrick Megonigal headshot

Pat Megonigal is Senior Scientist and Associate Director of Research at the Smithsonian Environmental Research Center. Dr. Megonigal is an ecosystem ecologist with research interests in carbon and greenhouse gas cycling in wetlands and forests, particularly as they relate to global change. He is the Lead Investigator of the Smithsonian’s Global Change Research Wetland, a long-term research site dedicated to understanding the stability of tidal wetlands faced with accelerated sea level rise and biogeochemical interactions between wetlands and estuaries. Dr. Megonigal is a contributing author to the Coastal Blue Carbon Handbook and the VCS Methodology on Restoration of Tidal Wetlands and Seagrasses, and he is a member of the Scientific Working Group of the Blue Carbon Initiative.

 

Dr. James HolmquistJames Holmquist

James Holmquist is an ecologist at the Smithsonian Environmental Research Center, specializing in global change and carbon cycling in wetlands. In 2015 he joined a NASA-funded project tracking U.S. coastal wetland greenhouse gas storage and emissions. He directs the Coastal Carbon Network, and aims to improve the state of science and management using data synthesis, teamwork, and training.

 
 
 
Dr. Lisa-Marie Windham MyersLisamarie Windham-Myers headshot

Dr. Lisamarie Windham-Myers is a wetland ecologist and lead scientist for the USGS-NRP program “Plant:Soil:Water Interactions in Wetland Ecosystems”. Broadly-trained in ecosystem ecology, her research focuses on plant physiology and its influence on carbon, nutrient, and trace-metal biogeochemistry. Her approaches span landscape-to-molecular scales as necessary to understand how human and stochastic alterations of wetland structure influence wetland function.  A San Francisco Bay native, her local research sites represent a wide range of salinity and management conditions, from rice agriculture to coastal and restored wetlands.  Lisa serves in several local, national and international science advisory efforts to evaluate wetland management and modeling approaches to quantify wetland carbon sequestration, greenhouse gas budgets and/or mercury methylation and export. Visit her website here

 

David KlingesDavid Klinges headshot

David is a Data Technician in the biogeochemistry lab at the Smithsonian Environmental Research Center, and assists in managing the Coastal Carbon Network. He specializes in ecological data curation and synthesis, as well as designing web interfaces and data-access tools. David possesses a B.A. in Biological Sciences from Dartmouth College. Visit his website here.

 

 

 

 

Return to Top

Soil Carbon Working Group

Improved measuring, reporting, modeling, and mapping of soil carbon burial rates and carbon stocks in coastal wetlands

Time and Location:

December 8 and 9, 2018, hosted at the Smithsonian Environmental Research Center, Edgewater, Maryland

Research Questions: 

1. What is the potential for pairing Bayesian statistical methods with process-based modeling to map carbon stocks and sequestration rates?

2. How much variation in carbon stocks and burial rates is attributable to field and lab techniques, and how much to process uncertainty?

Final Products:

1. Paper on modeling and forecasting soil carbon sequestration rates

2. Papers on best practices for field, lab, and data management

3. Open-source R package(s) of marsh equilibrium models

4. Mapped products at the scale of the contiguous United States if applicable

Working Group Application

**APPLICATIONS FOR THE "IMPROVED PROCESS MODELING AND MAPPING OF TIDAL WETLANDS METHANE EMISSIONS" WORKING GROUP ARE CLOSED.**

A goal of the CCRCN is to quantitatively improve the state of the science. One of our proposed activities is to use five topical working groups over the next five years to share data and expertise. The steering committee has decided to announce the titles and timing of the first two working groups, and suggestions for future working groups. Our decisions have been made based on three insights:

1. The initial results of a sensitivity analysis of U.S. coastal wetland flux which quantitatively rank priorities for reducing uncertainty.
2. Feedback from you at our 2017 AGU Town Hall, our 2018 community priorities survey, and individual outreach with many of you.
3. A recognition that the CCRCN steering committee needs to offer enough detail and leadership so that the workshops have direction, but not at the expense of remaining flexible to the changing nature of research and community priorities over the next five years.

The five workshops are:

1. Improved measuring, reporting, modeling, and mapping of soil carbon burial rates and carbon stocks in coastal wetlands

Time and Location: December 8 and 9 (before AGU), hosted at the Smithsonian Environmental Research Center, Edgewater, Maryland

Research Questions: 1. How much variation in carbon stocks and burial rates is attributable to field and lab techniques, and how much to environmental covariates? 2. What is the potential for machine learning or process-based modeling to map carbon stocks and burial rates?

Final Products: 1. Paper on best practices for field, lab, and data management; 2. papers on modeling and mapping; 3. Mapped products at the scale of the contiguous United States if applicable.

2. Improved process modeling and mapping of tidal wetland methane emissions

Applications now being accepted! 

Timing and Location: Workshop will be in December 2019, exact time and location TBD. Working group members will commit to remote collaboration in the months leading up to a two-day workshop, and are expected to contribute at the level of co-author to 1-2 culminating papers. 

Potential Future Working Groups

Detecting Carbon Flux Associated with Wetland Loss and Restoration (Timing: 2020 or 2021)

CO2 Vertical Flux and Scaling from the Chamber, Eddy Flux, to the Globe  (Timing: 2020 or 2021)

Quantifying Uncertainty Reduced by CCRCN Products, Scaling Outside the US, Determining New Research Priorities (Timing: 2022)

Each participant will be expected to agree to a code of conduct, contribute at the level of a coauthor, participate in remote collaboration in the months leading up to a two day workshop, attend all of the workshop, and assist in revising analyses and reviewing paper drafts following the workshop. We strongly encourage students and early career scientists to apply, especially as participation in data synthesis may advance publication and career opportunities. To maximize the diversity and number of participants, applicants should not expect to be selected for more than two working groups over the next five years. Travel funding will be provided for in-person workshops. Unfortunately funding for non-U.S. based collaborators is very limited. If you can provide your own funding, please indicate this on the application as it may free up funds for international participants.

Please indicate your ranked preferences 1 = highest, 5 = lowest.

Personal Info
Working Group Preferences
Note: applications for Working Group 1 are now CLOSED. Display of topics is primarily to gauge interest. A future application will be provided for these later working groups. 1 is highest priority, 4 is lowest priority.
1 2 3 4
Improved process modeling and mapping of tidal wetland methane emissions *
Tentative: detecting carbon flux associated with wetland loss and restoration *
Tentative: CO2 vertical flux and scaling from the chamber, eddy flux, to the globe *
Tentative: quantifying uncertainty reduced by CCRCN products, scaling outside the US, determining new research priorities *
Please explain why you would be a good fit for your preferred groups (e.g. unpublished data, data analysis skills, insights on the processes): *
Experience
Please describe your level of experience with the given skillset.
Travel