A PLACE-BASED APPROACH TO INVASIVE SPECIES EDUCATION

ANNA MEHLHORN

Smithsonian
Environmental Research Center
MY INTERNSHIP

ArcGIS StoryMaps

Illustration/Video

Snakehead Dissection

Stomach Contents

Lesson Plans

Environmental Literacy Educator Training
WHAT IS SENSE OF PLACE?

Place Attachment: To what degree is the place important?
Place Meaning: What makes the place important?

Sense of Place

Place Attachment
A bond between people and places

Place Meaning
Symbolic meanings ascribed to places

Kudryavstev et al., 2011
HOW DO YOU FOSTER A SENSE OF PLACE?

Experiential
Developing sense of place through field-based experience

Combined
Environmental education often combines two approaches

Instructional
Developing sense of place through discussion, art, reading, etc.

- Teacher Workshop Activities
- StoryMaps
- Documentary Video
- Lesson Plans
WHAT IS AN INVASIVE SPECIES?

An introduced species that causes harm in a place where it has not evolved to live.

- **Environment** – extinction and biodiversity reduction
- **Economy** – costs US government over $21 billion per year
- **Human health** – invasive pathogens or disease vectors
TREE OF HEAVEN ACTIVITY

BACKGROUND INFORMATION

- Fast-growing invasive tree
- Inhibits germination and growth of surrounding plants = **ALLELOPATHY**

What does this mean for biodiversity?

Maple leaf extract

Tree of heaven extract

[Graph showing growth over days with different treatments: Acer Treated, Ailanthus Treated.](Lawrence et al., 1991)
TREE OF HEAVEN ACTIVITY
EXPERIMENTAL DESIGN

SWEETGUM TREE
(NATIVE GROUP)

TREE OF HEAVEN
(INVASIVE GROUP)

x 3

EXPERIENTIAL LEARNING
Tree of Heaven Activity

Data Collection

Step 1: Download Plant ID App

Step 2: Scan unknown plants in your plot

Step 3: Record species name and approximate count on datasheet

Example: Virginia Creeper
WORKSHOP ACTIVITY - ANALYSIS

SHANNON-WIENER SPECIES DIVERSITY INDEX

- Species **Richness**: Total species count
- Species **Evenness**: Proportion of individuals in a single species compared to total number of individuals

\[
H' = - \sum_{i=1}^{s} (p_i) \ln p_i
\]

<table>
<thead>
<tr>
<th>H' = Shannon Diversity Index</th>
<th>Sweetgum (Native)</th>
<th>Tree of Heaven (Invasive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.990489665</td>
<td>0.6631445237</td>
<td>Bigger Diversity Index number (H') = greater diversity</td>
</tr>
</tbody>
</table>
HOW DID THIS ACTIVITY PROMOTE PLACE-BASED LEARNING?

- Hands-on outdoor experience
- Familiarized participants with local species
 - "species knowledge was found to be a highly significant determinant for both environmental systems knowledge and attitude towards the environment"

Härtel et al., 2023
NORTHERN SNAKEHEAD

BACKGROUND INFORMATION

• Introduced to Crofton, MD in 2002
• Large, voracious fish
 ○ Feed on juvenile native fish

• What does this mean for Chesapeake Bay food webs?
Invasive Spotlight: The Northern Snakehead

Get to know your newest neighbors: An overview of northern snakehead biology, history, and environmental impacts

StoryMap created by Anna Mehlhorn
March 29, 2023
LESSON PLAN EXAMPLE-
SNAKEHEAD DIET STUDY

- Inspired by genetics research in the Coastal Disease Ecology Lab
- Emphasizes:
 - Genetics concepts
 - Graphing
 - Data interpretation
LESSON PLAN EXAMPLE-
SNAKEHEAD DIET STUDY

"Mystery" Sequences
1) AATCTCTCGTCGTGTTACG CTCTCGGGTGTCGATCGCA...
2) GGGTTTCGGTTTTTCATGA TCGTCGTAAGAGACATTTG...
3) GGATCAGCTCTGGGGGAC AGTAGGCTAGCCATCAGATT...

Discuss: what impacts might this diet have on the local environment?
LESSON PLAN EXAMPLE-
SNAKEHEAD DIET STUDY

I. Summary

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Time Required</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>9th-12th</td>
<td>about 1 hour</td>
<td>invasive species, genetics</td>
</tr>
</tbody>
</table>

Lesson Overview

In this activity, students will complete their own diet analysis using DNA sequences from the stomachs of an invasive fish: the northern snakehead. As they decode these sequences using the BLAST program by the National Institutes of Health (NIH), students will build a list of prey items found in the stomach of each fish. Using these lists, students will work in groups and as a class to think about the environmental impacts snakeheads are having on the region.

Students will learn how to use genetics to study animals that live underwater, without ever having to put on a snorkel mask! They will learn that there are genes that all animals share, regardless of species, which can be used to study diet. Students will also learn how the diets of certain invasive species have noticeable effects on the plants and animals living in Chesapeake Bay environments.

III. Preparation

Teacher Preparation Steps

1. Using the Teacher Directions and Questions document, familiarize yourself with FASTA formatting, metabarcoding, and some of the prey items your students will be researching. Here you will also find sample graphs and discussion question responses.
2. Save the teacher version of the Sequence Reference Sheet to assist student with the identification of specific sequences as needed. This reference sheet is the answer key - it lists the correct prey item name above each “mystery” FASTA sequence, whereas the Student Reference Sheet lists only the mystery sequences.
3. Either pre-divide the class into groups, or have a plan for dividing the class into groups of two or more. Each group will be assigned one of the 15 snakehead fish to work with.
4. Print copies of the Student Directions and Questions page, or upload it somewhere that is easily accessible to students.

Background Information

See: Invasive Spotlight: The Northern Snakehead StoryMap (This is Activity 1)

Materials

- Computers/IPads (at least one per group)
- Graph paper (optional)
- Writing utensils/paper
- Calculators (optional)

II. NGSS Linkages

HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

HS-LS2-6. Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

IV. Procedure

Step 1
Give the class 15-20 minutes to explore the Snakehead StoryMap. Have a short follow-up discussion about what makes snakeheads an invasive species and why it is important to learn about their diet. Briefly discuss the genetics behind this activity. While students are reading over the StoryMap, split the class into groups of at least two students per group.

Step 2
Once the class is split into groups, direct students to the blank Student Directions and Questions sheet and the “mystery sequence” Student Reference Sheet. Assign a different snakehead fish (labeled in the reference sheet, snakehead 1-15) to each student group. Give the groups a few minutes to review the directions and sequences.

Step 3
Demonstrate to the class, using the first sequence on the Student Reference Sheet, how to copy the sequence and paste it into the Nucleotide BLAST program. Direct them to the website through Google or through the snakehead StoryMap. Copy and paste the first sequence where you see: “Enter Query Sequence / Enter accession number(s), g(0), or FASTA sequence(s)” Scroll down and click the blue BLAST button. The first sequence should produce the following result: Rhinoptera bonus.
HOW DO THESE SNAKEHEAD PROJECTS PROMOTE PLACE-BASED LEARNING?

- **Actionable ideas** - approachable (and fun!) ways to help manage snakeheads locally
 - Fishing/Identifying
 - Cooking

- **Maps and images** - easier to make connections to familiar locations and imagery

- **Class Discussion**

- **Storytelling** - "Place meanings can be articulated and reproduced through media independently of the actual location"

Giaccardi and Palen 2008: Malpas 2010
"WE CANNOT WIN THIS BATTLE TO SAVE SPECIES AND ENVIRONMENTS WITHOUT FORGING AN EMOTIONAL BOND BETWEEN OURSELVES AND NATURE—FOR WE WILL NOT FIGHT TO SAVE WHAT WE DO NOT LOVE."

STEPHEN JAY GOULD
REFERENCES

THANK YOU!

SERC
MERRILL FOUNDATION
ALISON CAWOOD
ANNA DAVIS
KATRINA LOHAN
PATRICK MCCABE
ZACK MILLS
LIZ ANDERSON
PUBLIC ENGAGEMENT TEAM