Blue Carbon Database Report

Coastal Carbon Network

Database Version 1.2.0

April 22, 2024
Table of Contents

Executive Summary .. 2
Introduction .. 4
 - CCN Data Library Representation ... 5
 - Core Count Growth Over Time ... 5
What’s New .. 6
 - Change in Data Representation by Country .. 7
Spotlight Efforts .. 8
 - NOAA Blue Carbon Inventory Project .. 8
 - Center for International Forestry Research ... 9
 - Global Salt Marsh Synthesis .. 9
 - Central American Stock Assessments ... 9
 - South African Carbon Data .. 10
State of the Data .. 10
 - Habitat Representation .. 10
 - Change in Data Analysis Categories ... 11
 - Inventorying Applications .. 12
 - Global Mangrove Carbon Stocks .. 13
 - Global Marsh Carbon Stocks .. 14
Acknowledgements .. 15
 - CCN Published Datasets Added .. 15
 - Externally Published Data Added ... 18
 - SWAMP Data ... 23
References ... 29
Appendix ... 30
 - Table 1: New Cores for Each Country .. 30
Executive Summary

<table>
<thead>
<tr>
<th></th>
<th>Since the official publication of Version 1.0.0 in October of 2023, the Coastal Carbon Network has added 8,429 soil cores to the Data Library, which is served through the Coastal Carbon Atlas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This update brings in a large amount of new data from outside the US, which greatly increases the Library’s representation of global marshes and mangrove habitats</td>
</tr>
<tr>
<td></td>
<td>Much of this progress is due to the engagement and contributions of individual researchers, both within the United States and internationally</td>
</tr>
<tr>
<td></td>
<td>These improvements in the stewardship and accessibility of country-specific data help build capacity for countries to leverage this data for initiatives, such as incorporating coastal wetlands into their greenhouse gas inventorying efforts, establishing Nationally Determined Contributions, and scaling projects up from local to national scales</td>
</tr>
</tbody>
</table>
Introduction

The Coastal Carbon Network (CCN) seeks to accelerate the pace of discovery in coastal wetland carbon science by providing our community with access to data, analysis tools, and synthesis opportunities. Our activities include bringing data libraries online, creating open source analysis and modeling tools, providing training and outreach opportunities, hosting data synthesis workshops targeted at strategically reducing uncertainty in coastal carbon science issues, and to create a community of practice. One of these resources is the Coastal Carbon Data Library, a global database of disaggregated soil carbon data from blue carbon habitats. This data is made accessible through the Coastal Carbon Atlas, an interactive web application developed to allow users to explore, query, and download data from tidal wetlands around the world.²

The Data Library was created from the doctoral work of CCN director, Dr. James Holmquist. Holmquist’s initial synthesis brought together 1,535 soil cores from the United States to look at different strategies to best map the country’s carbon stocks.⁶ However, it was not until October 2023 that the first version of the Data Library would be officially published on the Smithsonian Institute’s Figshare platform.³

This most recent update, Version 1.2.0, was published to Figshare in March of 2024, and adds 8,429 soil cores from 229 additional unique studies to the Library, sampled both internationally and in the United States.⁴ This report covers updates to the database since its official release (Version 1.0.0), explains key library growth metrics, and highlights a few recent CCN efforts that expanded important habitat representation.

<table>
<thead>
<tr>
<th>Database Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies: 559</td>
</tr>
<tr>
<td>Cores: 14,975</td>
</tr>
<tr>
<td>Countries: 70</td>
</tr>
<tr>
<td>Years of sampling: 1960 - 2022</td>
</tr>
<tr>
<td>Habitats: marsh, mangrove, seagrass, swamp, scrub/shrub, unvegetated, supratidal forest, algal mat, sabkha, microbial mat</td>
</tr>
</tbody>
</table>
CCN Data Library Representation

The Data Library has input from 70 countries across six continents. The United States currently leads total representation with over 5,000 of the almost 15,000 total cores.

Figure 1. Global map of cores included in the Data Library. Total country core count is represented by a color gradient, with a scale from <1,000 to >5,000 cores.

Core Count Growth Over Time

Since the Data Library’s first official publication, five years after Dr. Holmquist completed his US based synthesis, the efforts of the Network have more than doubled the size of this global repository. Updates to the Data Library are now issued regularly as new datasets are submitted and curated, and as the CCN team updates the database’s structure to reflect the most comprehensive organization of coastal wetland data. Accompanying the Data Library, updated versions of the synthesis are also served through the Coastal Carbon Atlas.²
What’s New

New datasets included in this update came largely from marsh and mangrove habitats of 40 different countries, 13 of which had no previous representation in the database. The Network’s recent efforts to archive original data have been focused on finding sample sources that reflect habitats’ global area coverage while increasing core counts from habitats that are vital suppliers of blue carbon ecosystem services. This influx of data comes from more than 200 studies that span 48 years of sampling and provide an ever clearer picture of global coastal carbon stocks.
Change in Data Representation by Country

The majority of new cores were added from the United States, the United Kingdom, and South Africa, bringing the increased core counts in each country to over 1,000. While the CCN is a global collaboration, the Network was created and initially funded with a focus on increasing the capacity of the US’ carbon stock assessment. In spite of the fact that the US only comprises 8.6% of global tidal ecosystems, it maintains its outsized representation in the Data Library in large part due to its initial core count lead as a result of the synthesis that began this effort. As the Network has grown, international representation increased dramatically as well, with new collaborators and funding sources for global work. With this update, international data has grown over 350% and has surpassed the current 5,422 cores from within the US.

Figure 3. Change in data representation across countries by the number of cores from Version 1.0.0 to this update.
Despite the recent growth of the Data Library, some habitats and countries remain underrepresented. Of the three most represented habitats - marsh, mangrove, and seagrass - real world area coverage is inverse to their presence in the Data Library with seagrasses taking up approximately 160,000 square kilometers,\(^9\) mangroves 147,000 square kilometers,\(^13\) and marshes 53,000 square kilometers.\(^14\) Since the database’s launch in October of last year, we have sought to close this representational gap and have more than doubled the number of mangrove cores present in the Data Library.

For countries with large amounts of coastal wetland, such as Australia, Brazil, Canada, China, and Indonesia, the amount of available data still reflects lacking coverage. There are also several countries with substantial coastal wetland habitat that have no available data; namely: Papua New Guinea, Myanmar, Guinea, and Sierra Leone. Representation, too, of countries with smaller areas of wetland should also not be overlooked. Improvements in available data are especially needed for small island nations, such as those in the Caribbean and Indo-Pacific, which rely heavily on the services that their coastal wetland ecosystems provide. In the future, we hope to expand the scope of our data to include a greater diversity of source locations for each of our habitats.

Spotlight Efforts

Among the 229 new studies included in this version, several key efforts helped to grow the Data Library to its current size featuring nearly 15,000 cores. To recognize these collaborators and data contributors, the CCN would like to highlight a few of these recent international efforts.

NOAA Blue Carbon Inventory Project

For the past two years, the CCN has been providing technical support to the [National Oceanic and Atmospheric Administration Blue Carbon Inventory Project](https://www.bluecarboninventories.org/) (NOAA BCIP), which seeks to enhance the capacity for countries to integrate coastal wetlands data into their greenhouse gas inventories.\(^5\) Through this effort, the Network has engaged more directly with stakeholders in countries with little to no available blue carbon data.
Center for International Forestry Research

In late 2023, the CCN team harmonized data from the Center for International Forestry Research (CIFOR) data repository that houses detailed soil core information from countries around the world. CIFOR is a non-profit headquartered in Bogor, Indonesia that seeks to improve the technical understanding of climate change through scientific research on the challenges of forest and landscape management. The collection and archival of this data was coordinated by the Sustainable Wetlands Adaptation and Mitigation Program (SWAMP). The Coastal Carbon Atlas now hosts the 1,604 cores from the mangroves of 10 different countries across Asia and South America.

Global Salt Marsh Synthesis

The majority of the marsh data included in this update is due to a synthesis effort led by Dr. Tania Maxwell, a research scholar with the International Institute for Applied Systems Analysis Biodiversity and Natural Resources Program. Maxwell recently finished a postdoc at the University of Cambridge, funded by the Nature Conservancy, where she collated a dataset of soil organic carbon from tidal marshes around the world and developed an estimate of carbon stock for these habitats globally. This work led to the contribution of 2,806 tidal marsh cores taken in over 20 different countries.

Central American Stock Assessments

This update features the publication and integration of carbon data from Costa Rica and Panama stock assessments, contributed by steering committee member, and long-time collaborator, Dr. Miguel Cifuentes-Jara. In addition to leading the data collection efforts which elevate in-country inventorying capacity, Cifuentes-Jara has coordinated outreach and trainings in multiple countries to foster relationships between scientists, industry managers, and the public around developing holistic blue carbon monitoring and management practices.

The expansion of representation of Central America in the blue carbon community wouldn’t be complete without mentioning the work of Dr. Hannah Morrissette. In 2021, Dr. Morrissette was part of Belize's first national mangrove stock assessment project that sampled above and belowground carbon throughout the country. Morrissette and her team worked with stakeholders at all levels throughout the country to promote collaboration and knowledge
sharing to solidify support from the communities whose livelihoods depend on the health of mangrove habitats and whose actions are most vital to their conservation.

South African Carbon Data
And finally, we would like to highlight our collaboration with Professor Janine Adams and Anesu Machite from Nelson Mandela University in South Africa.11 Published in March of 2024, Adams and Machite’s data publication contributed a synthesis of soil carbon data consisting of 23 studies and student theses. This synthesis includes 1,546 cores and surface soil samples, from marsh, mangrove, and seagrass habitats along the coast of South Africa. This effort helped to largely grow the number of cores in South Africa from 9 in Version 1.0.0 to 1,576 in this version. At present, South Africa is one of three countries with the greatest number of soil cores included in the Data Library.

State of the Data

Habitat Representation
Both marsh and mangrove habitat saw significant increases in available data in this update; however, marshes remain the dominant habitat type across the entire database. Out of the almost 15,000 total cores comprising the database, about half come from marsh habitat, a third from mangrove, and less than 7% each from seagrass, unvegetated, swamp, and other habitats. Habitats classified as “other,” or those that represent a combined 1.2\% of the Data Library, include algal mat, sabkha, microbial mat, and supratidal forest. The dominance of marsh representation throughout the history of the Data Library was led by large sampling efforts in the United States. International representation, on the other hand, was historically dominated by mangroves until this update, and the inclusion of the global marsh synthesis led by Dr. Tania Maxwell.
Change in Data Analysis Categories

In addition to compiling data, the CCN also classifies soil cores based on the types of analyses for which they can be used. Cores meet the requirements for calculating carbon stocks if they include dry bulk density and a measurement of organic matter or carbon content. Over 10,000 soil profiles now included in the Data Library have sufficient data to calculate carbon stocks. Far fewer cores have associated data to sufficiently complete the more complex analyses of determining carbon burial rates or forecasting burial rates in the context of a changing climate. To determine the rate at which carbon is buried in sediment layers, cores must provide stratigraphic dating information; and, to determine forecasting, these cores must also have precise elevation measurements. This update doubles the number of dated cores, bringing the total count to over 1,000.
Figure 5. Summary of the number of cores with data sufficient for key analyses over the history of the Data Library.

Another metric of data quality is the depth to which samples were taken. If the contact point between wetland sediment and bedrock is reached, this is considered a complete profile. The majority of these in the Data Library come from mangrove and marsh habitat, with 601 complete mangrove soil profiles and 206 complete marsh soil profiles. Of these profiles, mangrove habitats were dominated by deep cores, those greater than a meter in length, while soil samples from seagrass and unvegetated habitats tended to be shallow - those sampled at less than 20 centimeters. Despite being more difficult to obtain due to sediment depth or equipment constraints, deep cores provide data that are the most representative of the area in which they were taken.

Inventorying Applications

Most data in the Data Library are measurements used to calculate stock assessments of soils. To perform these calculations, soil core data is summarized and standardized to include only those data that can accurately represent how much carbon can be found in one meter of soil in a given habitat. A stock assessment is an important metric for understanding how particular
habitats aid in creating the Nationally Determined Contributions (NDCs) that are vital to evaluating the impacts of climate change. Here we provide a snapshot of soil carbon stocks in the two most abundantly represented habitats within our database: mangroves and marshes.

Global Mangrove Carbon Stocks

Although useful as a benchmark, the average global stock assessment falls short when calculating NDCs for those countries who have available stocks. Mangrove stocks are particularly noteworthy as they provide data on the second most prolific habitat type in the database - found in almost two thirds of represented countries. Leading both the global mangrove area cover and representation in the Data Library, Indonesia has 573 cores with stock assessment data.

Figure 6. Mangrove soil carbon stocks standardized to the top one meter of soil by country compared to our database’s calculated global average.
Global Marsh Carbon Stocks

Within the Data Library and Atlas, marshes are the most represented habitat, spanning 23 countries. Sixteen of these have core profiles complete enough to generate the standard 1-meter stock assessment. The US, holding approximately a third of the global area extent of marshes, has the greatest representation with 486 complete core profiles.\(^\text{14}\) Despite the input from many of the most representative countries hosting marsh ecosystems, there remain some key exceptions. The CCN has partnered with organizations in several of these countries that are helping develop national carbon inventorying programs to help build up representation.

Figure 7. Marsh soil carbon stocks standardized to the top one meter of soil by country compared to our database’s calculated global average.
Acknowledgements

The CCN would like to acknowledge the following authors and collaborators who contributed data and intellectual input to the Coastal Carbon Data Library from the publication of Version 1.0.0 to Version 1.2.0. We recognize both authors who published original data through the CCN, and externally published data included in Version 1.2.0 of the Data Library.

CCN Published Datasets Added

Cifuentes et al 2023: Cifuentes-Jara, Miguel; Manrow-Villalobos, Marylin (2023). Dataset: Study of total economic valuation of the main services provided by mangroves in the Gulf of Chiriquí, Panama. Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.24294928

Cifuentes et al 2024: Cifuentes-Jara, Miguel; Pérez, Christian Brenes; Manrow-Villalobos, Marilyn; Torres, Danilo (2024). Dataset: Land use dynamics and mitigation potential of the mangroves of the Gulf of Nicoya, Costa Rica. Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.24943866

Costa et al 2023: Costa, Matthew T.; Ezcurre, Exequiel; Ezcurre, Paula; Salinas-de-León, Pelayo; Turner, Benjamin L.; Leichter, James; et al. (2023). Dataset: Sediment depth and accretion shape belowground mangrove carbon stocks across a range of climatic and geologic settings.. Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.21295716

Darienzo and Peterson 1990: Darienzo, Mark; Peterson, Curt (2024). Dataset: Episodic Tectonic Subsidence of Late Holocene Salt Marshes, Northern Oregon Central Cascadia Margin. Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.25270099

Kemp et al 2024: C. Kemp, Andrew; P. Horton, Benjamin; J. Culver, Stephen; Corbett, D. Reide; van de Plassche, Orson; Gehrels, W. Roland; et al. (2024). Dataset: Timing and magnitude of recent accelerated sea-level rise (North Carolina, United States). Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.24910587

Langston et al 2022: Langston, Amy; Coleman, Daniel; Jung, Nathalie; Shawler, Justin; Smith, Alexander; Williams, Bethany; et al. (2024). Dataset: The Effect of Marsh Age on Ecosystem Function in a Rapidly Transgressing Marsh. Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.24913215

Morgan et al 2024: Morgan, Pamela; Burdick, David; Short, Frederick (2024). Dataset: Soil organic matter in fringing and meadow salt marshes in Great Bay, New Hampshire and southern Maine. Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.25222124
https://doi.org/10.25573/serc.21298338.v2

https://doi.org/10.25573/serc.24467977

https://doi.org/10.25573/serc.24470152

https://doi.org/10.25573/serc.24602130

https://doi.org/10.25573/serc.23960784

https://doi.org/10.25573/serc.23960811

https://doi.org/10.25573/serc.23960826

Rovai et al 2022: Rovai, Andre; Twilley, Robert; Castaneda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; et al. (2023). Dataset: Global controls on carbon storage in mangrove soils. Smithsonian Environmental Research Center. Dataset.
https://doi.org/10.25573/serc.21295713

Shaw et al 2021: Shaw, Timothy; Cahill, Niamh; Barbieri, G; Ashe, E; S. Khan, Nicole; Brain, M; et al. (2023). Dataset: Relative sea-level change and driving processes during the past ~4000 years in the Chesapeake Bay, U.S. Atlantic Coast. Smithsonian Environmental Research Center. Dataset. https://doi.org/10.25573/serc.24526066

Externally Published Data Added

McClellan et al 2021: McClellan, S. Alex; Elsey-Quirk, Tracy; Laws, Edward; DeLaune, Ronald (2021), “Data for: Root-zone carbon and nitrogen pools across two chronosequences of coastal
marshes formed using different restoration techniques: Dredge sediment versus river sediment diversion”, Mendeley Data, V1, doi: 10.17632/5zbv2mb5zp.1

Turck et al 2014: Georgia Coastal Ecosystems LTER Project and J.A. Turck. 2014. Vibracore and Tree Stump Data from the Marsh Near Mary Hammock, McIntosh County, GA ver 10. Environmental Data Initiative. https://doi.org/10.6073/pasta/4541ae084d807962b8c331eea61908bd

SWAMP Data

References

Appendix

Table 1: New Cores for Each Country

<table>
<thead>
<tr>
<th>country</th>
<th>total cores</th>
<th>habitat</th>
<th>sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>6</td>
<td>marsh</td>
<td>Rios et al 2018</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>10</td>
<td>mangrove</td>
<td>Akther et al 2021</td>
</tr>
<tr>
<td>Belgium</td>
<td>6</td>
<td>marsh</td>
<td>Mazarrasa et al 2023</td>
</tr>
<tr>
<td>Country</td>
<td>Code</td>
<td>Vegetation Type</td>
<td>Authors (Year)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Belize</td>
<td>126</td>
<td>mangrove, seagrass, scrub/shrub</td>
<td>Morrissette et al 2023, Beers et al 2023</td>
</tr>
<tr>
<td>Cambodia</td>
<td>145</td>
<td>mangrove</td>
<td>Sharma et al 2021</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>138</td>
<td>mangrove, other</td>
<td>Rovai et al 2022, Cifuentes et al 2024 Nicoya</td>
</tr>
<tr>
<td>Location</td>
<td>Count</td>
<td>Type</td>
<td>References</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Denmark</td>
<td>22</td>
<td>marsh, seagrass, unvegetated</td>
<td>Graversen et al 2022, Holmer et al 2006</td>
</tr>
<tr>
<td>Ecuador</td>
<td>36</td>
<td>mangrove</td>
<td>Costa et al 2023</td>
</tr>
<tr>
<td>El Salvador</td>
<td>9</td>
<td>mangrove</td>
<td>Rovai et al 2022</td>
</tr>
<tr>
<td>Estonia</td>
<td>14</td>
<td>marsh</td>
<td>Sammul et al 2012</td>
</tr>
<tr>
<td>Gabon</td>
<td>17</td>
<td>mangrove</td>
<td>Trettin et al 2020</td>
</tr>
<tr>
<td>Country</td>
<td>Sites</td>
<td>Type</td>
<td>Studies</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Indonesia</td>
<td>570</td>
<td>mangrove</td>
<td>Kusumaningtyas et al 2018, SWAMP Data Soil carbon Berahan kulon 2019,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SWAMP Data Soil carbon Timbuil sloko 2019, SWAMP Data Soil carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bunaken 2011, SWAMP Data Soil carbon Kubu Raya 2011 Indonesia, SWAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data Soil carbon Sembilang 2011 Indonesia, SWAMP Data Soil carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tanjung Puting 2009 Indonesia, SWAMP Data Soil carbon Teminabuan 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indonesia, SWAMP Data Soil carbon Temika 2011 Indonesia, SWAMP Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soil carbon Arguni Bay West Papua 2015 Indonesia, SWAMP Data Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>carbon Bintuni Bay West Papua 2018 Indonesia, SWAMP Data Soil carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bu runway West Papua 2016 Indonesia, SWAMP Data Soil carbon Etna Bay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>West Papua 2017 Indonesia, SWAMP Data Soil carbon Kaimana City West</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Papua 2017 Indonesia</td>
</tr>
<tr>
<td>Iran</td>
<td>96</td>
<td>mangrove</td>
<td>Hamzeh and lahijani 2022</td>
</tr>
<tr>
<td>Ireland</td>
<td>136</td>
<td>marsh</td>
<td>Burke et al 2022, Cott et al 2013, Grey et al 2021</td>
</tr>
<tr>
<td>Italy</td>
<td>32</td>
<td>marsh</td>
<td>Guerra et al 2022, Vitti et al 2020</td>
</tr>
<tr>
<td>Kenya</td>
<td>80</td>
<td>seagrass,</td>
<td>Githaiga et al 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unvegetated</td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td>2</td>
<td>marsh</td>
<td>Noguiera et al 2022</td>
</tr>
<tr>
<td>Netherlands</td>
<td>47</td>
<td>mangrove,</td>
<td>Senger et al 2020, Mazarrasa et al 2023, Van de Broek et al 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>marsh</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Area</td>
<td>Dominant Habitats</td>
<td>References</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>New Zealand</td>
<td>9</td>
<td>marsh</td>
<td>Bulmer et al 2020</td>
</tr>
<tr>
<td>Norway</td>
<td>10</td>
<td>marsh</td>
<td>Ward 2020</td>
</tr>
<tr>
<td>Panama</td>
<td>155</td>
<td>mangrove, scrub/shrub, seagrass</td>
<td>Rovai et al 2022, Costa et al 2023, Cifuentes et al 2023 Panama, Beers et al 2023</td>
</tr>
<tr>
<td>Spain</td>
<td>100</td>
<td>marsh, mudflat</td>
<td>Camacho et al 2014, Gonzalez-Alcaraz et al 2015, Kumar et al 2020, Mazarrasa et al 2023, de los Santos et al 2023</td>
</tr>
<tr>
<td>Country</td>
<td>Area</td>
<td>Ecosystem</td>
<td>Sources</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Tanzania</td>
<td>98</td>
<td>mangrove</td>
<td>Dai et al 2022, Trettin et al 2020</td>
</tr>
<tr>
<td>Thailand</td>
<td>124</td>
<td>mangrove</td>
<td>Bukoski et al 2020, Sharma et al 2021</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>30</td>
<td>marsh</td>
<td>Schile et al 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ruranska et al 2020, Ruranska et al 2022, Smeaton et al 2021, Smeaton et al 2022a, Smeaton et al 2022b,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Smeaton et al 2023</td>
</tr>
<tr>
<td>Vietnam</td>
<td>288</td>
<td>mangrove</td>
<td>SWAMP Data Soil carbon Ca Mau 2012 Vietnam, SWAMP</td>
</tr>
</tbody>
</table>